

Offices: 310-377-6029 / 310-803-9284 Fax: 310-377-9940 www.adsantec.com

ASNT5001-PQC 17*GHz* Clock or 28*Gbps* Data Phase Shifter with Linearized OB

- Broadband (10*MHz*-17*GHz* / 20*Mbps*-28*Gbps*) tunable clock/data phase shifter.
- Delay adjustment range of 250ps.
- Exhibits low jitter and limited temperature variation over industrial temperature range.
- 1*GHz* of bandwidth for the phase adjustment tuning port.
- Fully differential CML input interface.
- Fully differential CML output interface with 600mV single-ended swing.
- Linearized data output for minimized undershoot/overshoot.
- Single +3.3V or -3.3V power supply.
- Power consumption: 1.15*W*.
- Fabricated in SiGe for high performance, yield, and reliability.
- Standard MLF/QFN 24-pin package.

Offices: 310-377-6029 / 310-803-9284 Fax: 310-377-9940 www.adsantec.com

DESCRIPTION

Fig. 1. Functional Block Diagram

ASNT5001-PQC is a clock / data variable delay line fabricated in SiGe technology. The IC shown in Fig. 1 provides an adjustable delay of a broadband signal applied to its input port ("inp/inn"), with a temperaturestabilized adjustment range. Due to an extremely low jitter, the part is suitable for use in high-speed measurement / test equipment. The part's I/Os support the CML logic interface with on chip 50*Ohm* termination to "vcc" and may be used differentially, AC/DC coupled, single-ended, or in any combination. The delay is controlled through a wide-band differential tuning port ("icntp/icntn"). The delay control diagram is shown in Fig. 2. The output buffer is linearized for reduction of undershoots and overshoots on the output waveforms.

Fig. 2. Delay Control Diagram.

Offices: 310-377-6029 / 310-803-9284 Fax: 310-377-9940 www.adsantec.com

POWER SUPPLY CONFIGURATION

The ASNT5001-PQC can operate with either a negative supply ("vcc" = 0.0V=ground and "vee" = -3.3V), or a positive supply ("vcc" = +3.3V and "vee" = 0.0V=ground). In case of the positive supply, all I/Os need AC termination when connected to any devices with 50*Ohm* termination to ground. Different PCB layouts will be needed for each different power supply combination.

All the characteristics detailed below assume "vcc" = 0.0V and "vee" = -3.3V.

ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings shown in Table 1 may cause damage to this product and/or lead to reduced reliability. Functional performance is specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed or implied. All min and max voltage limits are referenced to ground (assumed "vcc").

Parameter	Min	Max	Units
Supply Voltage ("vee")		-3.6	V
Power Consumption		0.5	W
RF Input Voltage Swing (SE)		1.0	V
Case Temperature		+90	°С
Storage Temperature	-40	+100	°С
Operational Humidity	10	98	%
Storage Humidity	10	98	%

Table	1.	Absolute	Maximum	Ratings.
1 000 00		11000000000	1.1.00000000000000000000000000000000000	

TERMINAL FUNCTIONS

TERMINAL		TYPE	DESCRIPTION	
NAME (NO.)				
VCC	1,3,5,7,9,11	PS	Positive power supply or ground	
	13-17,19,21,23			
vee	6,12,18,24	PS	Ground or negative power supply	
inp	20	Input	Differential CML high-speed signal inputs	
inn	22			
outp	10	Output	Differential CML high-speed signal outputs	
outn	8			
icntp) 2	Input	Differential wide-band phase adjustment tuning signal inputs	
icntn	n 4			

Ultra High-Speed Mixed Signal ASICs

Offices: 310-377-6029 / 310-803-9284 Fax: 310-377-9940 www.adsantec.com

ELECTRICAL CHARACTERISTICS

PARAMETER	MIN	ТҮР	MAX	UNIT	COMMENTS
vee	-3.1	-3.3	-3.5	V	±6%
vcc		0.0		V	External ground
Ivee		350		mA	
Power		1.15		W	
Junction Temp.	-25	50	125	$^{\circ}C$	
Input (in)					
Data rate/Clock frequency	0.0		28/17	Gbps/GHz	
SE Swing	50	400	1000	mV	Peak-to-Peak
CM Level	"vcc"-(SE swing)/2			V	
Output (out)					
Data rate/Clock frequency	0.0		28/17	Gbps/GHz	
SE Swing	570	600	630	mV	Peak-to-Peak
CM Level	"vcc"-(SE swing)/2			V	
Phase Shift	0		250	ps	$<\pm 5\%$
Shift Stability	-4		2	ps	0-125°C
Rise/Fall Times	15	17	19	ps	20%-80%
Additive Jitter		TBD		ps	Peak-to-Peak
Duty Cycle	45%	50%	55%		For clock signal
Tuning Port (icnt)					
SE voltage level	"vcc"-1	1000	"vcc"	mV	When the opposite
					pin is at "vcc"
SE swing	0		1000	mV	Peak-to-Peak in
					differential mode
CM Level	"vcc"-(SE swing)/2		ving)/2	V	In differential mode
Bandwidth	0.0		1000	MHz	

PACKAGE INFORMATION

The chip die is housed in a standard 24-pin QFN package shown in Fig. 3. It is recommended that the center heat slug located on the back side of the package is soldered to ground to help dissipate heat generated by the chip during operation.

The part's identification label is ASNT5001-PQC. The first 8 digits of the name before the underscore identify the bare die including general circuit family, fabrication technology, specific circuit type, and part version while the 3 digits after the underscore represent the package's manufacturer, type, and pin out count.

This device complies with the Restriction of Hazardous Substances (RoHS) per EU 2002/95/EC for all six substances.

ASNT

Offices: 310-377-6029 / 310-803-9284 Fax: 310-377-9940 www.adsantec.com

Fig. 3. Package Drawing.

REVISION HISTORY

Revision	Date	Changes
1.4	2-2012	Revised Description section
		Revised Power Supply Configuration section
1.3	1-2012	Added absolute maximum ratings table
		Added power supply recommendations table
		Added mechanical drawing of package
1.2	12-2011	Modified electrical characteristics table
		Modified title and description
		Added revision history table
1.1	9-2011	Initial Release