Product Features

Fast and accurate L/I/V curve generation

Internal, high-resolution power meter

Up to 5000 data points generated in seconds

Drive current ranges of 200/500 mA and 2/4 A

32 W output temperature controller

SPA-9000 Windows® Software or LabVIEW®Drivers available

NEW! Wavelength Measurement Capability

The LPA-9080 Series Parameter Analyzer, when combined with the SPA-9000 Windows-based parametric analysis software, forms the ideal system for fast, accurate parametric analysis of laser diodes. This system has been optimized for fast, precise L/I/V curve generation, making it the ideal parametric test solution for incoming inspection, production line testing, and R&D applications.

The LPA-9082 supports drive current ranges of 200 mA and 500 mA, while the LPA-9084 provides ranges of 2 A and 4 A, allowing you to select the analyzer that best matches your laser diode testing requirements. Both versions contain a 32-watt temperature controller for precise temperature control of internal peltier coolers. The LPA-9080 also contains a precision power meter with 16-bit resolution, that connects with our entire line of OMH-6700 Power/Wavelength measurement heads. L/I, V/I, and other associated curves of up to 5000 data points can be generated and stored in seconds.

LPA Series

Parameter Analyzer

A Dedicated System for Laser Diode Parametric Analysis

LPA 9080 Series

Parameter Analyzer

A Dedicated System for Parametric Analysis

The LPA-9080 Series is the industry's only laser diode controller and power meter specifically dedicated to parametric analysis applications. Now accurate, low-noise drive current, laser diode protection, and fast L/I/V curve generation is available in one instrument, eliminating the need for multiple instrument connections and complex triggering and programming details.

Sophisticated Power and Wavelength Measurement Capabilities

The power meter in the LPA-9080 contains ILX's precision power measurement capabilities with full 16-bit resolution. Twelve photocurrent input ranges from 50 nA to 10 mA support a wide range of detector head inputs. The LPA-9080 seamlessly integrates our full line of OMH-6700 Series Power & Wavelength Measurement Heads, providing accurate power measurements as well as a power-averaged center wavelength measurement. This line of sensor heads can cover optical power measurements from as low as -90 dBm to +30 dBm. Our proprietary integrating sphere technology also eliminates polarization dependencies in your measurement. A wide range of fiber-optic connectors are also available.

Two Software Choices Available

ILX Lightwave offers two software choices for the LPA-9080:

- The SPA-9000 Parametric Analysis Application Software for Windows® 98/95/NT Lab/UEW® Deiser
- LabVIEW[®] Driver

The SPA-9000 software contains a full-featured Test Edit Wizard for creating flexible, powerful laser diode test configurations. The software's flexibility allows for user customization of screen-based and printed test output. The built-in Microsoft Access® database provides easy data analysis, report generation, or export of data to other enterprise applications. The SPA-9000 software also has a Manual Control mode, for operating the LPA-9080 as a laser diode controller with internal power meter. For more information on the SPA-9000 software, visit our website at www.ilxlightwave.com.

The LabVIEW® driver gives you a quick start in creating custom applications to your exact specifications. These drivers give you access to the full complement of GPIB-based commands for the LPA-9080, while allowing you to integrate additional test instrumentation to your functional test station. LabVIEW® drivers are downloadable from ILX's Web site at no additional cost.

A Complete Testing Solution

The laser diode controller in the LPA-9080 contains all of ILX's proven laser diode protection features, including adjustable compliance voltage with up to 10 V of headroom, and fast shut-off circuitry. The 32 W output temperature controller can handle the demands of most internal peltier cooling elements found in today's laser diode packages. To complete your test setup, a complete line of ILX Lightwave laser diode mounts are available for most common package types. These mounts provide convenient, cabled connections to the LPA-9080, and handle variations in laser diode pin-outs through user-configurable connections.

All of this, together with our line of OMH-6700B Measurement heads, combines readily into a complete laser diode test system.

Results You Can Count On

Whether your application is fast, accurate production line testing, reliable incoming laser diode inspection, or highly exacting research and development applications, ILX delivers a powerful testing solution aimed at increasing your productivity and profitability.

Specifications

DRIVE CURRENT OUTPUT Output Current Range:

Setpoint Accuracy (% of FS):

Setpoint Resolution:

Compliance Voltage: Temperature Coefficient:

Short-Term Stability (1 hr.):2 Long-Term Stability (24 hr.):3 Noise and Ripple:4 High Bandwidth Mode: Low Bandwidth Mode: Transients: Operational:5 1kV EFT/Surge:6 COMPLIANCE VOLTAGE ADJUST

Range: Resolution: Accuracy (over the range):

DRIVE CURRENT LIMIT SETTINGS Range:

Resolution: Accuracy:

PHOTODIODE FEEDBACK

Type: Differential PD Reverse Bias; 0-5V Adjustable Pd Current Range: 5-5000.0 uA Output Stability:7 ±0.02% Accuracy, Setpoint (% of FS): ±0.05%

EXTERNAL ANALOG MODULATION

Input:	0–10 V, 1 kΩ	0–10 V, 1 kΩ	
Transfer Function:	20 mA/V	50 mA/V	
Bandwidth (3 dB)			
High Bandwidth: ⁸	DC to 1 MHz	DC to 1 MHz	
Low Bandwidth:9	DC to 15 kHz	DC to 15 kHz	

LPA-9082

0-500 mA

<50 ppm/°C

<20 ppm

<40 ppm

<4 µA rms

<2 µA rms

<8 mA/<12 mA

<3 mA

0-10 V

50 mV

±2.5%

10-505 mA

1-505 mA

Differential

0-5V Adjustable

5-5000.0 uA

±0.02%

±0.05%

2 mA

±5 mA

0-10 V, adjustable

10 µA

±0.05%

0-200 mA

4 µA

±0.05%

0-10 V, adjustable

<50 ppm/°C

<20 ppm

<40 ppm

<4 µA rms

<2 µA rms

<8 mA/<12 mA

<3 mA

0-10 V

50 mV

±2.5%

10-202 mA

1-202 mA

1 mA

±2 mA

MEASUREMENT Output Current Bange

Output Current Range:	0–200.00 mA	0–500.00 mA
Output Current Resolution:	0.01 mA	0.01 mA
Output Current Accuracy:	±0.05% of FS	±0.05% of FS
Photodiode Current Range:	0–5,000 μA	0–5,000 μA
Photodiode Current Resolution:	0.1 µA	0.1 μΑ
Photodiode Current Accuracy:	±2 μA	±2 μA
Forward Voltage Range:	0.000-10.000 V	0.000-10.000 V
Forward Voltage Resolution:	1 mV	1 mV
Forward Voltage Accuracy:10	±2 mV	±2 mV

CURRENT SOURCE NOTES

All values relate to a one-hour warm-up period. 1

Over any 1-hour period, half-scale output. 2

Over any 24-hour period, half-scale output. 3

4 Measured optically, evaluating noise intensity of a laser diode into a photodetector with 150 kHz Bandwidth. Request ILX Application Note #3.

Maximum output current transient resulting from normal operational situations (e.g., power on-off, current on-off), as well as accidental situations 5 (e.g., power line plug removal).

Maximum output current transient resulting from a 1000 V power-line transient spike. Tested to ILX Lightwave Technical Standard #LDC-00196. 6 Request ILX Application Note #3.

Maximum monitor photodiode current drift over any 30 minute period. Assumes zero drift in responsivity of photodiode.

300 mA setpoint, 60 mA modulation current. 8

LPA-9084 $0_{2000} mA$

<15 µA rms <10 µA rms

<4 mA <10 mA / <8mA

0-10 V 50 mV ±2.5% 40-2020 mA

10 mA ±20 mA

Differential 0-5V Adjustable

5-10.000 uA ±0.02% ±0.05%

0–10 V, 1 kΩ 200 mA/V

0-2000.0 mA

±0.1% of FS

0-10,000 µA

0.000-10.000 V

0.1 mA

1 µA

±4 μA

1 mV

±2 mV

DC to 250 kHz DC to 10 kHz

> 0.1 mA ±0.1% of FS 0-10,000 µA 1 µA ±4 μA 1 mV

> > ±2 mV

<20 µA rms <10 µA rms <4 mA <10 mA / <8mA

0-4000 mA

0-10 V, adjustable

<100 ppm/°C

80 µA

±0.05%

<20 ppm

<40 ppm

0-10 V

50 mV ±2.5% 80-4040 mA

0-5V Adjustable 5-10.000 uA

0–10 V, 1 kΩ

DC to 250 kHz DC to 10 kHz

0-4000.0 mA 0.000-10.000 V 90ðu Series Parameter

Analyzer

10-2020 mA 10-4040 mA 20 mA ±40 mA Differential ±0.02% ±0.05% 400 mA/V

LPA 9080 Series

Parameter Analyzer

Specifications¹

TEMPERATURE CONTROL OUTPUT -100.0°C to +199.9°C

Resolution

0.001°C

0.05°C

0.2°C

0.01°C

Resolution

<0.004°C

<0.01°C

>8 V DC

<1 mA rms

NTC (2-wire)

AD590/LM335

10 μA/100 μA

4 A

32 W

0-4 A

±0.05 A

Accuracy³

+0.2°C

+0.2°C

±0.2°C

Accuracy

+0 1°C

Bipolar, constant current source

Smart Integrator, Hybrid PI

P,100/Other 100 Ω RTD

25-450,000 Ω, typical

R(25°C) = 109.73 Ω

IC Sensors = Two-point

Resolution

0.01°C

0.01°C

AD590 = 8 V, LM335 = 1 mA,

 $I(25^{\circ}C) = 298.2 \ \mu A, I_1 = 1 \ \mu A/K$

V(25°C) = 2.73 V, V = 10 mV/K

Temperature Control Range:2 Thermistor Set point -20°C to 10°C4 10°C-40°C5 40°C-70°C5 AD590 & LM335 Set point -20°C to 50°C Short-Term Stability (1 hr.):7 Long-Term Stability (24 hrs.):8 Output Type: Compliance Voltage: Short Circuit Output Current: Maximum Output Power: Current Noise and Ripple:9 Current Limit Range: Current Limit Set Accuracy: Control Algorithm:

TEMPERATURE SENSOR

Types Thermistor: IC Temperature Sensor: RTD Sensor:10 Thermistor Sensing Current: Sensor Bias: RTD = 0.8 mA8 Usable Thermistor Range: Typical Sensor Output:1 AD590 Current Output: LM335 Voltage Output: RTD (P,100) Resistance: User Calibration:

TEC MEASUREMENT

Temperature 10 µA Setting:13 100 µA Setting:14 Thermistor Resistance 10 µA Setting: 100 µA Setting: TE Current: Voltage:15

POWER METER	(All models)

Range¹²

-99.9°C to 199.9°C

-99.9°C to 199.9°C

Detector Current

Range: Accuracy:

Short-Term Repeatability:1

Maximum Input Signal: Detector Bias: Responsivity Power Limit Setting:

10 mA Read in from detector or calibration files Software selectable, 0.01-1000 mW (LPA-9082) Software selectable, 0.01-5000 mW

Power Limit Resolution:

POWER METER NOTES

Data taken every 10 seconds over 10 minutes, 1/2 scale constant current input, all ranges, 25°C

<65% relative humidity, non-condensing for ranges 50, 100, 500 nA and 1 A 2

In keeping with our commitment to continuing improvement, ILX Lightwave reserves the right to change specifications without notice and without liability for such changes.

TEMPERATURE CONTROL NOTES

All values relate to a one-hour warm-up period.

2 Software limits of range. Actual range possible depends on the physical load, thermistor type, and TE module used.

Accuracy figures are guoted for a typical 10 k Ω thermistor and 100 μ A current 3 setting. Accuracy figures are relative to the calibration standard. Both resolution and accuracy are dependent upon the user-defined configuration of the instrument.

- Using 10 kΩ thermistor, on 10 µA setting.
- 5

Using 10 k\Omega thermistor, on 100 μA setting. Accuracy depends on the sensor model selected, the calibration standard, and the 6 user-defined configuration of the instrument.

- Over any 1-hour period, half-scale output, controlling an LDM-4412 mount@25°C, with 10 kΩ thermistor, on 100 µA setting.
- 8 Over any 24-hour period, half-scale output, controlling an LDM-4412 mount@25°C,
- with 10 kΩ thermistor, on 100 µA setting.
 9 Measured at 1 A output over a bandwidth of 10 Hz 10 MHz
 10 When used with TSC-599 RTD Sensor Convertor.
- 11 Nominal temperature coefficients, It and Vt, apply over the rated IC temperature sensor range.
- Software limits of display range.
- 13 Using a 100 k Ω thermistor, controlling an LDM-4412 mount over -30°C to 25°C
- Using a 10 k thermistor, controlling an LDM-4412 mount over 0°C–90°C
- 15 Voltage measurement accuracy while driving calibration load. Accuracy is dependent upon load used.

GENERAL Connectors

Usage

Class:

Accuracy

±0.1°C

±0.05°C

+0.05%

±0.05%

±0.04 A

±30 mV

Photodiode Monitor/Current Source: 9-pin, D-connector, for LASER output and PD input TE Controller/Sensor: 15-pin, D-connector, for TE output and Sensor input 26-pin, D-connector Photodetector Head: External Modulation BNC, instrumentation amplifier input Thermistor: Steinhart-Hart, 3 constants, GPIB Interface: Meets ANSI/IEEE Std 488.1-1987 Meets ANSI/IEEE Std 488.2-1987 Size (HxWxD): 4" x 8.5" x 13.4", 102 mm x 216 mm x 340 mm Indoor use only Protection: Ordinary protection (Not protected against harmful ingress of moisture) Class I (Grounded type) Power Requirements: 100 - 115/220 - 240 V, 50/60 Hz, 3.0/1.5 A Supply voltage fluctuations are not to exceed 10% of the nominal supply voltage Pollution: Pollution Degree II Installation (OverVoltage) Category II for transient Overvoltages Humidity²: <80% relative humidity, non-condensing Temperature: 0°C to +40°C operating; -40°C to +70°C storage/transportation Maximum Altitude: 3000 m Operation: Suitable for continuous operation 13 lbs (6 kg) (9082), 14 lbs (6.5 kg) (9084) Weight: Key switch, interlock and output delay Laser Safety Features: (meets CDRH US21 1040.10) Display Type: 2-digit, green LED

ORDERING INFORMATION

LPA-9082	Laser Parameter Analyzer (200/500 mA Current Source, 32 W TEC)	
LPA-9084	Laser Parameter Analyzer (2000/4000 mA Current Source, 32 W TEC)	
SPA-9000	Parametric Analysis Windows® Software	
CC-305S	Current Source/Laser Diode Mount Interconnect Cable	
CC-306S	Current Source/Unterminated Interconnect Cable	
CC-501S	TE Controller/Unterminated Interconnect Cable	
CC-505S	TE Controller/Laser Diode Mount Interconnect Cable	
TS-510	Calibrated 10 kΩ Thermistor	
TS-520	Uncalibrated 10 kΩ Thermistor	
TS-530	Uncalibrated AD590LH IC Temperature Sensor	
TS-540	Uncalibrated LM335AH IC Temperature Sensor	
TSC-599	RTD Temperature Sensor Converter	
RM-136	Rack Mounting Kit	
LabVIEW [®] Instrument Driver		

Windows® is a registered trademark of Microsoft®. LabVIEW® is a registered trademark of National Instruments

REV02.041206

0.01 to 450.00 kΩ 0.01 kΩ 0.001 to 45.000 k Ω 0.001 kΩ -4.000 to 4.000 A 0.001 A -10.000 to 10.000 V 1 mV

1, 5, 10, 50, 100, 500 µA; 1, 5, 10 mA 5% of FS (50-500 nA) 1% of FS (1 µA to 10 mA) 0.5% of FS (50-500 nA) 0.1% of FS (1 µA to 10 mA) 0-10.1 V, user programmable (LPA-9084)

0.01 mW

50, 100, 500 nA;